Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida.
نویسندگان
چکیده
Benzene dioxygenase and toluene dioxygenase from Pseudomonas putida have similar catalytic properties, structures, and gene organizations, but they differ in substrate specificity, with toluene dioxygenase having higher activity toward alkylbenzenes. The catalytic iron-sulfur proteins of these enzymes consist of two dissimilar subunits, alpha and beta; the alpha subunit contains a [2Fe-2S] cluster involved in electron transfer, the catalytic nonheme iron center, and is also responsible for substrate specificity. The amino acid sequences of the alpha subunits of benzene and toluene dioxygenases differ at only 33 of 450 amino acids. Chimeric proteins and mutants of the benzene dioxygenase alpha subunit were constructed to determine which of these residues were primarily responsible for the change in specificity. The protein containing toluene dioxygenase C-terminal region residues 281 to 363 showed greater substrate preference for alkyl benzenes. In addition, we identified four amino acid substitutions in this region, I301V, T305S, I307L, and L309V, that particularly enhanced the preference for ethylbenzene. The positions of these amino acids in the alpha subunit structure were modeled by comparison with the crystal structure of naphthalene dioxygenase. They were not in the substrate-binding pocket but were adjacent to residues that lined the channel through which substrates were predicted to enter the active site. However, the quadruple mutant also showed a high uncoupled rate of electron transfer without product formation. Finally, the modified proteins showed altered patterns of products formed from toluene and ethylbenzene, including monohydroxylated side chains. We propose that these properties can be explained by a more facile diffusion of the substrate in and out of the substrate cavity.
منابع مشابه
Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture.
Construction of a hybrid strain which is capable of mineralizing components of a benzene, toluene, and p-xylene mixture simultaneously was attempted by redesigning the metabolic pathway of Pseudomonas putida. Genetic and biochemical analyses of the tod and the tol pathways revealed that dihydrodiols formed from benzene, toluene, and p-xylene by toluene dioxygenase in the tod pathway could be ch...
متن کاملToluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli.
The nucleotide sequence of the todC1C2BADE genes which encode the first three enzymes in the catabolism of toluene by Pseudomonas putida F1 was determined. The genes encode the three components of the toluene dioxygenase enzyme system: reductaseTOL (todA), ferredoxinTOL (todB), and the two subunits of the terminal dioxygenase (todC1C2); (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene deh...
متن کاملTrichloroethylene degradation by Escherichia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes.
Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentrat...
متن کاملToluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene.
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pi...
متن کاملPhospholipids of Five Pseudomonad Archetypes for Different Toluene Degradation Pathways
Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine intact phospholipid profiles for five reference pseudomonad strains harboring different (aerobic) toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1. These five strains contained a predomina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 3 شماره
صفحات -
تاریخ انتشار 2005